

Outline

- Novozymes Company Brief
- Project Overview
- Project Progress Summary
- Technology Descriptions and Test Results
- Plans for Future Testing and Development

Novozymes in Brief – World Leader in Bioinnovation no Producing large volume enzymes for industrial applications

www.novozymes.com

Enzyme-catalyzed CO₂ Reaction Mechanism

Carbonic anhydrase catalyzes (increases kinetic rates) the hydration of CO_2 and dehydration of bicarbonate resulting in enhanced absorption and desorption of CO_2 into and out of a CO_2 absorber solvent.

Project Overview

- DOE Project Manager: Andrew Jones
- Project Participants

- Project Duration: Oct. 1,2011 Dec. 31, 2014
- Total Project Budget: \$2,088,643
 - FFRDC Share: \$489,949
- Total Project Award: \$1,598,694
 - DOE Share: \$1,168,670
 - Total in-kind Cost Share: \$430,024

Overall Project Objective

Complete a *bench-scale study* and corresponding full technology assessment to validate the potential in meeting the DOE Program Objectives of a *solvent-based post-combustion carbon dioxide capture* system that integrates

- a low-enthalpy, aqueous potassium carbonate-based solvent
- with an absorption-enhancing carbonic anhydrase enzyme catalyst
- and an ultrasonic-enhanced regenerator
- in a re-circulating absorption-desorption process configuration

DOE Program Objectives

Develop solvent-based, post-combustion technology that

- Can achieve $\geq 90\%$ CO₂ removal from coal-fired power plants
- Demonstrates progress toward the DOE target of <35% increase in LCOE

Conceptual Process Design

- Advantages
- Low enthalpy, benign solvent (catalyzed aq. 20% K₂CO₃)
- Potential for ~50% regeneration energy vs. MEA

- Challenges
- Demonstrate atmospheric regeneration at 70°C
- Demonstrate overall techno-economic feasibility (energy demand and enzyme requirement)

Project Schedule

- Task 1 Project Management and Planning
- Task 2 Process optimization
 - Ultrasonic Unit Optimization
 - Solvent & Enzyme-Solvent Compatibility Optimization
 - Solvent Physical Properties & Kinetic Measurements
 - Design Integrated Bench-Scale System
- Task 3 Initial Technical & Economic Feasibility
- Task 4 Bench Unit Procurement & Fabrication
- Task 5 Unit Operations Shakedown Testing & Integration
- Task 6 Bench-scale Testing
- Task 7 Full Technology Assessment

BP3

12/2014

Project Progress Summary – Budget Period 1

Key Milestone	Success Criteria	Risk	Performance achieved so far
Optimize Ultrasonic Regeneration conditions	Ultrasonics achieves lean loading equivalent to vacuum stripping at 70°C	Rectified diffusion does not sufficiently enhance CO_2 gas release	Achieved 30% of CO ₂ desorption working range target
WWC measurements demonstrate Catalyzed Solvent Kinetics	Enzyme-solvent kinetics are \geq 50% versus 30 wt% MEA under same process conditions	Absorption kinetics do not meet the target	Milestone mass transfer achieved
Complete Preliminary technical and economic Feasibility Study	Study supports the technology could be a lower cost option	Estimated power requirements exceed target threshold	In progress
Additional Milestone – Enzyme Compatibility with ultrasonics	Enzyme activity Pass/Fail	Enzyme not compatible with required ultrasonic field	Enzyme passed initial ultrasonics stress test
Additional Milestone – Enzyme Assay Automation	Implement assay	Continue using resource - intensive manual method	Microtiter format assay developed and implemented

Ultrasonics Regeneration Mechanism

- Create a population of seed bubbles above a critical radius via a ultrasonic cavitation in the liquid
- Bubbles expand and shrink in an ultrasonic field
 - Expanding bubbles = lower pressure/ higher surface area
 - Shrinking bubbles = higher pressure/ lower surface area
- Rectified diffusion results when expanding bubbles allow for a biased transfer of dissolved gas into the bubble from solution
 - Frequency optimization likely required due to its impact on the threshold pressure, and bubble growth
- Remove bubbles grown via rectified diffusion before they can dissolve back into the liquid

Proudly Operated by Battelle Since 1965

PNNL's Lab Ultrasonic Desorption System Schematic

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

PNNL's Lab Ultrasonic Desorption System

Solvent Recirculation Lines

Proudly Operated by Battelle Since 1965

Photographs of Ultrasonic Desorption

Pure Water at 70°C – With Sonication

Loaded Solvent at 70°C – No Sonication Loaded Solvent at 70°C – With Sonication

Proudly Operated by Battelle Since 1965

Significant agitation/ bubbling observed when ultrasonic power added to CO_2 loaded 20% K_2CO_3 solution at 70°C

Video of Ultrasonic Desorption

Ultrasonic Regeneration – Lab Test Results

- Achieved approximately one third of the 2.1 wt% CO₂ desorption working range target
- 40% of the released CO_2 from ultrasonic effect, the rest from heat
- Slow CO₂ release rates observed
 - Significant CO₂ re-dissolution suspected
 - Kinetic improvements expected with optimization

Proudly Operated by Battelle Since 1965

Enzyme Compatibility with Ultrasonic Treatment

- Enzyme tolerates initial ultrasonic tests with no apparent loss of activity
- Automated enzyme assay was developed for use throughout the project

UK-CAER Wetted Wall Column Schematic

Measures gas to liquid flux

UK-CAER Mass Transfer Results

Solvent: aq. 20% K₂CO₃ + carbonic anhydrase

• Achieved Initial Milestone Enzyme-catalyzed Solvent Kinetics (Mass Transfer)

Foundation for Bench-scale CO₂ Capture Process

Post-Combustion CO₂ Capture

Doosan Power Systems offers:

- Advanced amine scrubbing technology
- Partnership with the University of Regina for solvents (specialists in CO₂ capture since 1987)
- Full EPC carbon capture plant capability
- Optimisation with the full plant
- Development centre based in Renfrew with 100 engineers and scientists

Boundary Dam Operated since 2000

Emissions Reduction Test Facility, Renfrew

Ferrybridge/CC Pilot 100+ Start of operations: November 2011

20

Approach to Model Development

- 1.Develop the Boiler Turbine Generator Model with Flue Gas treatment (ThermoFlow[™]) based on NETL Case 9
- 2.Modeling of the PCC process (including compression) using Aspen Plus[®].
- 3.Cost estimation of the PCC process to be performed using AspenTech Process Economic Analyser (PEA)
- 4.Initial feasibility and sensitivity studies to be performed based on the fixed coal feed rate as per Case 10 (MEA) for the enzyme enhanced K_2CO_3 solvent.
- 5. Perform the final Techno-economic assessment by integrating the PCC process for a net 550 MWe power plant island.

Preliminary Feasibility Study – Key Progress

- Estimation of the costing model for NETL Case 9 analysed to identify key assumptions
- The PCC process has been modelled based on Case 10 (MEA).
 - Analysis underway to identify key process parameters such as L/G ratio, column sizes, rich and lean loadings etc.

Current solvent

- A preliminary Aspen simulation has been set up for the K_2CO_3 case.
- The initial feasibility study will be performed using a vacuum stripping process to mimic the ultrasonic desorption.
- Initial cost-estimation calculations provide a promising outlook for the process, including technical challenges to overcome.

Plans for Future Testing and Development

- Current Budget Period
 - Continue ultrasonic desorption optimization in lab scale
 - \circ Run vacuum stripping test to better quantify the comparison case
 - Continue absorption mass transfer kinetics enhancement tests
 - Stress-test enzyme at expected bench-scale design limits
 - Design integrated bench-scale system
 - Finalize preliminary feasibility study
- Next Budget Periods
 - Proceed to bench-scale build, testing & Technology Assessment
- Next Project
 - Scale-up beyond bench-scale depends on
 - Bench-scale Full Technology Assessment
 - Possible need for further component development

Acknowledgements

DOE-NETL Andrew Jones

PNNL Charles Freeman (PM) Kayte Denslow Richard Zheng

UKY-CAER Joe Remias (PM) Balraj Ambedkar

DPS

Vinay Mulgundmath (PM) Saravanan Swaminathan

NZ

Sonja Salmon (PI/PM) Alan House Megan Beckner Whitener

Thank You